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What this talk is about?

1. Actual issues for Safety-Critical systems design

2. Why Model-Based Engineering techniques are helpful

3. How AADL can detect issues early and avoid potential rework
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Agenda

Introduction on Model-Based Engineering
Presentation of the Case Study

System Overview

AADL model description

Architecture Analysis

Conclusion
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Agenda

Introduction on Model-Based Engineering
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Polling Question 1

Do you know what Model-Based Engineering is?
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Safety-Critical Systems are Intensively Software-Reliant
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Source: “Delivering Military Software Affordably” in Defense AT&L
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Errors are introduced early but detected (too) lately

High Fault Leakage Drives Major Increase in Rework Cost

Aircraft industry has reached limits of affordability o,
due to exponential growth in SW size and complexity. (20.5% 300'100

- m -'.._ -
70% Requirements &

80% late error
sysl‘em teracti erro
in on = discovery at high
. .

.. rework cost
Test
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xA $10K architecture phase correction saves $3M
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s 5')( Unit Where faults are introduced
Rework and certification is 70% of SW Where faults are found
cost, and SW is 70% of system cost. The estimated nominal cost for fault removal
Sources: k " . . .
NIST Planning report 02-3, The Economic Impacts of Inadeguate .-". ."‘. CDS“V certification process leads to hlgh
Infrastructure for Software Testing, May 2002. PRl percentage of operational work around.
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Why Model-Based Engineering Matters?

Capture system architecture with designers requirements
Focus on system structure/organization (e.g. shared components)
Tailor architecture to specific engineering domain (e.g. safety)
Validate the architecture
Check requirements enforcement (e.g. no global variable)
Detect Potential issues (e.g. interfaces consistency)
Early Analysis
Avoid late re-engineering efforts (e.g. less rework after integration)
Support decisions between different architecture variations

= Speed Regulation Case-Study
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Polling Question 2

Do you already know AADL?
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Architecture Analysis Design Language

SAE Standard for Model-Based Engineering
First version in 2003, actual version 2.1
Definition of System and Software Architecture
Specialized components with interfaces (not just “blocks”)
Interaction with the Execution Environment (processor, buses)
Extension mechanisms

User-Defined Properties (integrate your own constraints)
Annexes (existing for safety, behavior, etc.)
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AADL Model Example
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Architecture Analysis Design Language
Security

Safety & Reliability
MTBE sIntrusion
i \ sIntegrit
EMEA \ , / ntegrity
/ *Confidentiality
*Hazard

analysis
Auto-generated
analytical models

: \ 1/ Resource
Data Quality \ Consumption
sData precision/ *Bandwidth
accuracy CPU ti

. o ime

“Temporal Real-time Performance Sower
correctness *Execution time/ consumption

«Confidence Deadline

Deadlock/starvation

sLatency
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Agenda

Presentation of the Case Study
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Objectives of this Study

Learn Architecture Modelling with AADL and the OSATE workbench
Model a family of systems with their variability factors

Analyze the Architecture from a performance perspective

Discover Safety Issues using Architecture Models

Support Architecture Alternatives Selection

lllustrate the Process with a relevant case study

= Speed Regulation Case-Study
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Case-Study Description

Self-Driving car speed regulation

Obstacle detection with user warning
Camera detection
Infra-red sensor

Automatic Speed and Brake
Two speed (wheel, laser) sensors
Redundant GPS

=== Software Engineering Institute | Carnegie Mellon University
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Polling Question 3

On what aspect would you like to focus?
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Case-Study Objectives

Help designers to choose the best Architecture
Best reliability, avoid potential failure/error
Meet timing and performance requirements
Analyze Architecture according to stakeholders criteria
Try to analyze what really matters
Quantify architecture quality from different perspectives
Latency
Resources and Budgets
Safety/Reliability

= Speed Regulation Case-Study
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Agenda

System Overview
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Functional Architecture
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Functional Architecture, timing perspective
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Functional Architecture, criticality perspective
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Deployment Alternatives

Alternative 1: reduce cost and complexity
Two processors and one shared bus

Potential interactions for functions collocated on the same
processor

Alternative 2: reduce potential fault impact
Increase potential production cost (more hardware)
Three processors inter-connected with two buses

X . . . Speed Regulation Case-Study
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Architecture Alternative 1 Reduce Cost and Complexity

Potential interactions for functions collocated
on the same processor

Bandwidth: 500 kbps
Acquisition time: 10 to 30ms
Transmission time: 1 to 10 us per byte

— 50 MIPS

. . Speed Regulation Case-Study
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Architecture Alternative 2 Reduce Fault Impact

Might increase production costs

Bandwidth: 5 kBps
Acquisition time: 50 to 100ms
Transmission time: 10 to 50 us per byte

GP51
Position
Woter
GP52

50 MIPS

50MIPS

ECLIZ

50MIPS
Speed Regulation Case-Study
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Agenda

AADL model description
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Modeling Guidelines

Separate architecture aspects in different files

Leverage AADL extension and refinement mechanisms
Capture common characteristics, avoid copy/paste
Extend generic components

Use properties to quantify quality attributes
Processed by tools to evaluate architecture quality
Specify once, use by several analysis tools
Ensure Analyses Consistency

= Speed Regulation Case-Study
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Model Organization — devices

Generic components

speed_sensor || aaaaaa I || warning_device I op=
#

speed laser_sensor speed_wheel_sensor

#
#
gpsE.impl

L1
aps.implE

Extension and refinements |

=== Software Engineering Institute
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Model Organization — devices — textual model

device [[zdar] I Component Name I

features

distance_estimate : owut data port speed_regulaticn::icd::distance;
flows
f@ : flow source di

PO A Timing constraints
(Iatency analysis) I Error propagations and flows I

annex EMW2 [*¥*
use types speed_reg

error propagations |
distance_estimate : out propagatiohl{HoValue,InualidValue};l ‘

Types of faults

(all safety analysis tools)

flows
ef@ : error source distance_estimate{NovValue,Invalidvalue};
end propagations;

PropaLbics
emvZ:iseverity =» ARP476l::Major applies to distance_estimate.novaluej;
emv2::likelihood => ARP4761::Prcbable applies to distance_estimate.novaluej;
emv2: thazards =>
([ crossreference =»> “"N/A"j;
failure => "NovValue"j;
phases => ("all");

description =»> "Moo informaticn from the Radar™;
comment =» "Error if both the camera and the radar does not send any walue”;j
1
applies to distance_estimate.novalue; Documentlng the faults
emv2:rseverity =» ARP476L1::Mincr applies to distance_estimate.invalidwvalue;
emv2::likelihood => ARP4761::Probable applies to distance_estimate.invalidvaluej; (safety anEﬂyS|S)

emv2:thazards =>
([ crossreference => "N/A";
failure => "Invalidvalue"j;
phases =» ("all");
description =* "Invalid distance sent by the radar”;
comment =¥ "First cccurrences of inwvalid data Should be handled by the distance estimator.”;

1D

applies to distance_estimate.invalidvalue;
—

Y .

nd
— . . . . . . Speed Regulation Case-Study
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Model Organization — Interfaces Specifications

Data types being used to
communicate across functions

Data size properties
(resource allocation and latency analysis)

data gp;. position

data ) ta_re e;enfaflcn =¥ Eenum;

=" One property, several analyses ccatoce -> ("brake”, "accel")s
d

pr

=@ Ensure Analyses Consistency

feced command
T speed_command;

data implementation speed_command.i

subcomponents
data boolean kind : data speed_command_type;
properties value @ data base_types::unsigned_16;

ldata size =»> 1 bits; end speed_command.i;
end boolean;

data distance extends base types::unsigned 32

end distance;

X . . . Speed Regulation Case-Study
=== Software Engineering Institute | Carnegie Mellon University =~ Julien Delange a1

© 2014 Carnegie Mellon University



Model Organization — platform

I
ecu_rs2ll_one_connector ecu_rs232_ two_cy

Generic Processor Component
(common for all the architecture)

processor ecu
properties

\;\ <
-\

SEI: :MIPSCapacity =»> 5S@8.8 MIPS;
end ecuj;

rai
ecu_can_one_connector ecu_can_two_connectors m
/ 5

processor ecu_can_one_connector extends ecu bus can,
features - - - %-,t_les T T
- . Latency == Ms .. Ms;
end ;zﬁkizn’C:zq:z:ﬁ;ﬁfzf.access cani SEI::BandWidthCapacity => SBEEEE.2 bitsps;
— — — — Transmissicn_Time =»> [ Fixed => 18 ms .. 38ms;
PerByte => 1 us .. 18 us; ];
LT \

Processor extension, specify bus connections Timing information
Share properties of inherited component (latency analysis)

Speed Regulation Case-Study

© 2014 Carnegie Mellon University
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Model Organization — software (1) | AADL Process |

/adur_ac:qui sil.iu-/ kpccd_cunlﬂ:llc/ %pc l:d_cstimat/ ﬁhshnlﬂ_d:’lﬂcﬁun /magc_acqui si'lju/
T
i
i

ﬁuar_a:quisltlcn/ speed I'.t}l‘llr't)ll&r/ /peeu estlma:e/ %ﬂ:slacle detectlonA /‘I‘\BDE _acouisiti DI'I

e - —-—————-————-—'- fo—mm—m————————m e —————————————— -y ———-———-—-———-———-—?

] 7 ¥ : .n

r" rndur_ur.nuisition_lhr,r J Jpeed_Ngntroller 1:h |:H:-|:d estimate_thr, -nhz.t.ur.ll: _detection_thr “fimage_acquisition th;

¥ ¥ ¢ l‘ § ‘

r________z______: F . L_______E______-f P | ________E_______."
————— e —— N ememe——— e e e e e e e ) ) e g
i 7 i

’fradar_acqul sition_thr.iy ;‘:peecl_e Btlmate_thr.!rlf ,JI mage_acquis mnn_tnr.?‘

I — LA ¥ ’ - ¥

AADL Thread

One software function = 1 AADL process + 1 AADL thread
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riicdisdistance;

= —
use behavior speed_regulation::error_library::simple;

error propagations

cbstacle_distance : in propagation {MNoValue,Invalidvalue};

cbstacle_detected : out propagation {NoValue,Invalidvalue};

processor : in propagation {SoftwareFailure, HardwareFailure};
flows

end propagations;

component error behavior
transitions
t@ : Operaticnal -[processor{ScftwarefFailure}]-> Failed;
tl : Operaticnal -[processor{HardwareFailure}]-> Failed;
t2 : Failed -[processor{NoError}]-> Operaticnalj;
propagations
pl : Failed -[]-> cbstacle_detected{NoValue};

T
h

ef@ : error path cbstacle_distance{NoValue} -»> cbstacle_detected{NoValue};

efl : error path cbstacle_distance{Novalue} -> cbstacle_detected{Invalidvalue};

ef3 : error path cbstacle_distance{Invalidvalue} -> cbstacle_detected{Invalidvalue};

ef2 : error path processor{HardwareFailure,ScftwareFailure} -> cbstacle_detected{NoWValue};

end component; - Component type

Communication interfaces |

-~ Data flow specification
(latency analysis)

Erroy specification
afety analyses)

end Fadar_scqUIsTCIon,

Model Organization — software — textual notation (1)

| Tl

= imnlementation radar aconi=sition.

SUhCEEE??E:Efead radar_acquisition_thr.jl; Component |mp|ementat|on
SchomponentS Connsgtlozzrt cbhstacle_distance -»> thyg.cbstacle_distance;
and Connectlons D-,._.:l port thr‘.nbﬂtﬁe detected chstacle detected:

end radar_acquisition.i;

=== Software Engineering Institute
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Model Organization — software — textual notation (2)

Data flow
thread radar_acquisition_thr (I atency an alysis)

features
cbstacle distance :

in data port speed_regulaticn: 1cd rdistance;
- ign:: i bool

i flow path ocbstacle distance -> obstacle detected;
properties
Dispatch_Protocol => Perilodic;
Period

Time information
(latency analysis)

En

Resource Budgets
(resource allocation analysis)

= Speed Regulation Case-Study
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Model Organization — safety specification

I Error types that could be raised I

package speed regulation::error_library
public
annex EMy2 {**
Error Types
MNoPower : twvpe;
WalueEr
Novalus alueError;
Invalid EI’I’OI’ StateS =
Hardwan
softwar I L=
end types;
error behawvior simple
states
Operational : initial statej;
Failed : state;

end spee

[
m
=
a

Component-specific error transitions
(to be added on a component-basis)

to be attached to components

v 1

oftware Engineering Institute ‘ Carnegie Mellon University

Speed Regulation Case-Study
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Model Organization — define error flows — error source

dewvice camera
features

picture : owt data port speed regulaticn::icd::picture;
flows
fe : flow source picture;

properties

Period => 28@ms: .
e Eings e | Reuse predefined types |
ez speed regulaticon::error library;

p—————p— Define error types propagated
picture : out propagation {NoWValuej}; on Component interfaces
----- ;fE : EBrror source picture{ﬂnvalue};l

ropagations;

Define the error sources,
] . . ..
end camera; what interfaces initiates an error flow

]
Component camera >

! NoValue error propagated

— . . . . . . Speed Regulation Case-Study
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Model Organization — define error flows — error path

annex EMy2 {*= | Reuse predefined types and behavior |
use types speed regulation::error lib S
I use behavior speed regulaticon::error librarv::isimple; I

ercor nronasations  DEfINE €rror types propagated on component interfaces

ehstacle distance : in propagation {MNoWalue,InvalidValue};
Dhstacle detected : out plepagatlen {HeUalue,InualldValue},

ef@ : error path cobstacle_distance{NoValue} -» ocbstacle_detected{NcValue};
efl : error path cbstacle_distance{NoValue} -» obstacle_detected{InvalidvValue};

ef3 : error path cbstacle distance{Inwvalidvalue} -* cbstacle detected{InvalidvWalue};
ef2 : error path processor{HardwareFailure,

: . ¥i
_end propasations; | Define the propagations flows L
o ]';‘ - - - o - |
obstacle_distance / NoValue —» obstacle_detected / NoValue
obstacle _distance / InvalidValue |
|
Processor/ SoItwareError obstacle detected / InvalidValue
Processor / HardwareError
| Component

X . . . Speed Regulation Case-Study
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Model Organization — error sink & define component error behavior

device warning_device
features

warning : in data port speed_regulation::icd::booclean;
flows
fe @ flow sink warning: | Jse predefined error types
properties
_ Pericd > sooms; and component behavior
use types speed_regulation::error_library; .
use behawvior speed_regulation::error_library::simplej; Operat|0na|
error propagations %
warning : in propagation {MNovalue,Inwvalidvaluel};
flows Rese NoValue
etf@ : error sink warning{Novalue,Invalidvalue}; InvalidValue

end propagations;

Define component-specific
error events

Reset : recover ewvent; |
transitions

t@ : Operaticnal -[warning{Movalue}]-» Failed;

tl : Operaticnal -[warning{Invalidvalue}]->» Failed;

t2 : Failed -[Reset]-» Operational;j

C Failed D

end component; CompOnent-SpeleIC
Ené"ﬁar‘ning_deuice; error tranSItlonS
= Speed Regulation Case-Study
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Model Organization — architecture alternatives

Common type for all
architecture alternative

Capture common
components characteristics

System implementation with
all common components

rd 1 L
F 1 LY
r : LY

Capture architecture
alternatives variability
8 (processors, buses, etc.)

My

( integration.implementationi ] ( integration.implementation2 ]

= Speed Regulation Case-Study
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Architecture Alternative 1: model instance

integration_implementation1_Instance

image_acquisition

emergency_detection warning_activation

obstacle_camera

warning_alert

picture
emergency_detected

obstacle detection obstacle_distance_evaluation

warning

obstacle_detected
obstacle_distance

picture

camera

activate_warning

obstacle_detected

emergency_detected

obstacle_radar radar_acquisition

obstacle_detected

obstacle_distance

nhstacle_distance
| current_speed

radar

distance_estimate

current_speed

ohstacleideté{cted

wheel_sensor

te

wheel_sensor

speed estim

speed i
speed_controller !/

speed,

laser _sensor old_calculation

laser_sensor current_speed f 3 |
speed current_speed i cm ]
emergency_defected
quot position threshold p—— threshold
iti acceleration
position?
pasition My position -‘I
gps2 position2 osition i
position - -"”" o _l___,__.,-—{

A
‘ | > can_socket

can_socket € |
-
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Architecture Alternative 2: model instance

integration_implementation2 Instance

radar_acquisition

obstacle_radar
obstacle detection
emergency_detection warning_activation

obstacle_distance
obstacle_detected 4
£ emergeﬁéy_deiecled

obstacle_distance_evaluation

distance_estimate

image _acduisition

nbstal:_}{eidistance

emergg{ncy_deiecled

S
A activate_warning

obstacle_camera
ohstacle_detkcted

picture i

warning_alert
\!\N warning

nbstacl\b;_distanr:e

etected

picture obstacle_d

curgent_speed

current_speed

wheel _sensor

speed_estimate
speed wheel_senso
laser_sensor laser_sensor speed speéd conlroller
speed threshold calculation v L-'i
speed T em_grgen‘cy detec}éd
o=t i currerﬂ _spe d
position_vofer; i current_speed P
- + - ] Vi
pasition position Vi position cmd
acceleration
sition
gps2 position2 3 threshold
position

can_socket \

_— - can1

echi1
/ can_socket2 \

can_socket!

can_socket

L .

<~ T T, Variability Factors with Alternative 1

-_—
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Latency Analysis, principles
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atency Analysis, results

flow model element name deadline or conn delay  total expected

f0: End to End Latency report

fo (Synchronous) device obstacle_camera:fo 200.0 ms 200.0 ms 900.0 ms

fo (Synchronous) Connection obstacle_camera.pictur 0.0 us 200.0 ms 900.0 ms

fo (Synchronous) thread image_acquisition.thr:f 50.0 ms 250.0 ms 900.0 ms

fo (Synchronous) Connection image_acquisition.thr.c 0.0 us 250.0 ms 900.0 ms

fo (Synchronous) thread obstacle_dete n.thr: 100.0 ms 350.0 ms 900.0 ms

= fo (Synchronous) Connection obstacle_detection.thr. 30.00125 ms 380.00125 ms 900.0 ms

A r C h I teCt u r e fo (Synchronous) thread obstacle_distance_ewval 10.0 ms 390.00125 ms 900.0 ms
fo (Synchronous) Connection obstacle_distance_ewval 0.0 us 380.00125 ms 900.0 ms

- fo (Synchronous) thread emergency_dete n.t4.0 ms 394.00125 ms 900.0 ms

A | t t 1 fO (Synchronous) Connection emergency_detection.t0.0 us 394.00125 ms 900.0 ms
e r n a I V e fo (Synchronous) thread warning_activation.thr: 2.0 ms 396.00125 ms 900.0 ms

fo (Synchronous) Connection warning_activation.thr. 0.0 us 396.00125 ms 900.0 ms

fo (Synchronous) device warning_alert:f0 500.0 ms 886.00125 mis 900.0 ms

fo (Synchronous) Total 0.0 us 896.00125 ms 900.0 ms

Ifl:l: End-to-end flow fO calculated latency (Synchronous) 896.00125 ms is less than expected latency 900.0 ms I

flow model elemername deadline or conr total expected

f0: End to End Latency report

fO {Synchronous) device obstacle_camera:fo 200.0 ms 200.0 ms 900.0 ms

fo {Synchronous) Connection  obstacle_camera.picture - 0.0 us 200.0 ms 900.0 ms

]FD {Synchronous) thread image_acquisition.thr:f0 50.0 ms 250.0 ms 300.0 ms

fo {Synchronous) Connection image_acquisition.thr.ob: 0.0 us 250.0 ms 900.0 ms

fO {Synchronous) thread obstacle_detection.thr:f0 100.0 ms 350.0 ms 900.0 ms

: fo {Synchronous) Connection  obstacle_detection.thr.ok 100.00625 ms 450.00625 ms  900.0 ms

A r C I t eC t u r e fo {Synchronous) thread obstacle_distance_evalua 10.0 ms 460.00625 ms  900.0 ms
fo {Synchronous) Connection obstacle_distance_evalua 0.0 us 460.00625 ms  900.0 ms

. 0 (Synchronous) thread emergency_detection.thr 4.0 ms 464.00625 ms  900.0 ms

A | te r n at I Ve 2 fo {Synchronous) Connection emergency_detection.thr 0.0 us 464.00625 ms  900.0 ms
fo {Synchronous) thread warning_activation.thr:fo 2.0 ms 466.00625 ms  900.0 ms

fo {Synchronous) Connection  warning_activation.thr.ac 0.0 us 466.00625 ms  900.0 ms

fO {Synchronous) device warning_alert:fO 500.0 ms 966.00625 ms  900.0 ms

fo {Synchronous) Total 0.0 us 966.00625 ms  900.0 ms

IERROR: f0: End-to-end flow f0 calculated latency (Synchronous) 966.00625 ms exceeds expected latency 900.0 msl
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Resources Allocation Analysis, principles
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Resources Allocation Analysis, results

Architecture
Alternative 1

Architecture
Alternative 2

-

Resource Budget Statistics

Processor Report
= Total MIPS 56.000 MIPS of bound tasks exceeds MIPS capacity 50.000 MIPS of ecul
Total MIPS 25.000 MIPS of bound tasks within MIPS capacity 50.000 PMIPS of ecud

Virtual Frocessor Eeport

FRAM/ROM Report

- .y
= Resource Budget Statistics lﬁ

Processor Report
Total MIPS 45.000 MIPS of bound tasks within MIPS capacity 50.000 PMIPS of ecul
Teotal MIPS 8,000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu2

Teotal MIPS 25.000 MIPS of bound tasks within MIPS capacity 50.000 MIPS of ecu3

Virtual Processor Report

RAM/ROM Report
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Safety Analyses Overview

Functional Hazard Analysis (FHA)

Failures inventory with description, classification, etc.
Fault-Tree Analysis (FTA)

Dependencies between errors event and failure modes
Fault-Impact Analysis

Error propagations from an error source to impacted component
Need to combine analyses

Connect results to see impact on critical components

X . . . Speed Regulation Case-Study
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Safety Analysis, FHA, results
Architecture Alternative 1: 15 errors contributors %

Architecture Alternative 2: 17 errors contributors @

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts
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Safety Analysis, FTA results
Architecture Alternative 1: 15 errors contributors %

Architecture Alternative 2: 17 errors contributors @

Difference stems from additional platform components (ecu)
Have to consider criticality of fault impacts
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Safety Analysis, Fault Impact, results
Architecture Alternative 1 & 2: 443 error paths

Use the same paths
The additional ECU in alternative 2 covers path from ecu2
in Alternative 1

Impact on components criticality

Defect on the additional bus in Architecture 2 impact low-critical
functions

|solate defect from low-critical functions to affect high-critical

= Speed Regulation Case-Study
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Analysis Summary

Architecture 1 Architecture 2

Latency

Resources Budgets

Safety

Cost

O XX ©
XOOX

What is the “best” architecture?
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Conclusions

Safety-Critical Systems Development issues is not a fatality
Late detection of errors is no longer possible
Need for new methods and tools
AADL supports Architecture Study and Reasoning
Evaluate quality among several architectures
Ease decision making between different architecture variations
Analysis of Architectural change on the whole system
User-friendly and open-source workbench
Graphical Notation
Interface with other Open-Source Tools
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Useful Resources

AADL wiki — http://www.aadl.info/wiki

Model-Based Engineering with AADL book

SEI blog post series http://blog.sei.cmu.edu

Mailing-List
see. https://wiki.sei.cmu.edu/aadl/index.php/Mailing List
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http://www.aadl.info/wiki
http://blog.sei.cmu.edu
https://wiki.sei.cmu.edu/aadl/index.php/Mailing_List

Questions & Contact

Dr. Julien Delange

Member of the Technical Staff
Architecture Practice
Telephone: +1 412-268-9652
Email: info@sei.cmu.edu

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

U.S. Mail

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257
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